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Abstract

With the onset of new satellite radar constellations (e.g. Sentinel-1) and advances in
computational science (e.g. grid computing) enabling the supply and processing of
multi-mission satellite data at a temporal frequency that is compatible with real-time
flood forecasting requirements, this study presents a new concept for the sequen-
tial assimilation of Synthetic Aperture Radar (SAR)-derived water stages into coupled
hydrologic-hydraulic models. The proposed methodology consists of adjusting stor-
ages and fluxes simulated by a coupled hydrologic-hydraulic model using a Particle
Filter-based data assimilation scheme. Synthetic observations of water levels, rep-
resenting satellite measurements, are assimilated into the coupled model in order to
investigate the performance of the proposed assimilation scheme as a function of both
accuracy and frequency of water level observations. The use of the Particle Filter
provides flexibility regarding the form of the probability densities of both model simu-
lations and remote sensing observations. We illustrate the potential of the proposed
methodology using a twin experiment over a widely studied river reach located in the
Grand-Duchy of Luxembourg. The study demonstrates that the Particle Filter algorithm
leads to significant uncertainty reduction of water level and discharge at the time step
of assimilation. However, updating the storages of the model only improves the model
forecast over a very short time horizon. A more effective way of updating thus con-
sists in adjusting both states and inputs. The proposed methodology, which consists in
updating the biased forcing of the hydrodynamic model using information on model er-
rors that is inferred from satellite observations, enables persistent model improvement.
The present schedule of satellite radar missions is such that it is likely that there will
be continuity for SAR-based operational water management services. This research
contributes to evolve reactive flood management into systematic or quasi-systematic
SAR-based flood monitoring services.
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1 Introduction

An appropriate, rapid, and effective response to any flood-induced disaster is essen-
tial. Remote sensing with its extensive spatial coverage in conjunction with prediction
models has the potential to deliver the kind and amount of information needed to meet
these objectives, especially in data sparse regions across the globe. Optical imagery
has been successfully used in the past to extract flooded areas. However, the rapid
flood recession in small- to medium-sized catchments and the typical weather con-
ditions during flood events hamper systematic and global flood detection with visible
satellite imagery. With its ability to acquire data during all meteorological conditions,
day and night, and its capability to provide information about the extent of open water
bodies, Synthetic Aperture Radar (SAR) instruments enable monitoring flood extents
over large areas and thus show high potential for facilitating effective flood disaster
management. Although significant improvements related to the usefulness, reliability
and availability of microwave remote sensing data have been achieved over the last
few years, there is a clear need for the development of new strategies that allow for a
more efficient use of remote sensing-based flood hazard monitoring.

To date, the use of radar imagery is very often limited to an instantaneous binary
segmentation into flooded and non-flooded pixels. Additionally, flooded areas retrieved
from remote sensing observations have been successfully used a posteriori for calibrat-
ing and evaluating hydrodynamic models (Aronica et al., 2002; Horritt and Bates, 2002;
Werner et al., 2005; Pappenberger et al., 2007; Di Baldassarre et al., 2009). Over the
last decade many studies have investigated ways to introduce the vertical dimension
in flood mapping based on remote sensing observations. Surface water storage can
be estimated via the retrieval of inundated areas and water surface elevation. Remote
sensing-based techniques thus enable the monitoring of changes in water volume in
ways that are not possible using stream gauges (Alsdorf and Lettenmaier, 2003). Two
main techniques may be distinguished: (1) direct measuring techniques such as those
from the proposed swath altimetry “Surface Water and Ocean Topography” (SWOT)
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mission (Alsdorf et al., 2007) and (2) indirect measuring techniques based on the es-
timation of river stages at the land-water interface using topographic maps or Digital
Elevation Models (DEM) (e.g. Smith, 1997; Brakenridge et al., 1998; Raclot, 2006;
Schumann et al.,, 2007a; Matgen et al.,, 2007a). Maps of water stage can be ex-
pected to contain more information than binary wet/dry maps and would thus be able
to constrain the uncertainty in hydrodynamic models more efficiently than binary pat-
terns (Schumann et al., 2009). The calibration of flood inundation models with remote
sensing-derived water level data has been investigated in only a few studies in the
recent past (Schumann et al., 2007b; Hostache et al., 2009; Mason et al., 2009).

Even if the prediction models are thoroughly calibrated with observations stemming,
for instance, from remote sensing observations, a mismatch will remain between mod-
elled and observed state and flux data. Hydrodynamic models do provide spatially
and temporally continuous surface fields but they are subject to uncertainties in input
data, model structure, model parameters and initial conditions. Periodically updating
the models with observations may thus reduce the predictive uncertainty of the mod-
els. This approach relies on the rationale that the merging of model results and remote
sensing observations, both subject to considerable uncertainty, yields the best possible
model analyses and eventually better predictions. As a prerequisite, however, remote
sensing-derived variables need to fulfil certain accuracy requirements. As a matter of
fact, in order to be of relevance to flood forecasting systems, uncertainties associated
with remote sensing data should be smaller than simulation uncertainties (Arya et al.,
1983). Schumann et al. (2009) argue that the lack of maturity of processing chains
needed to extract hydraulically relevant information from remote sensing data explains
why, to date, only point measurements of river stage and discharge are routinely as-
similated in hydraulic models (Madsen and Skotner, 2005; Neal et al., 2007; Smith et
al., 2009). Data assimilation studies investigating the usefulness of remote sensing
derived water level measurements are rare.

In one of the few data assimilation studies using real-event satellite data (as op-
posed to synthetic satellite observations), Neal et al. (2009) showed that it is possible
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to retrieve discharge and level estimates from ENVISAT Advanced Synthetic Aper-
ture Radar (ASAR) imagery when combined with hydrodynamic modelling using an
Ensemble Kalman Filter (EnKF). In their proof-of-concept study the assimilation of
SAR-derived water level data led to a significant reduction in discharge and water
level uncertainty over that derived from a sequence of atmospheric, hydrologic and
hydraulic models alone. In another study dealing with real-event satellite data, Matgen
et al. (2007b) used a direct insertion method that forced the prognostic state (i.e. water
stage) of the model to fall within the confidence interval of ENVISAT and European
Remote Sensing Satellite (ERS) SAR-derived water stages. Although the modelled
water levels were more accurate immediately after assimilation, during subsequent
time steps the modelled water surface line gradually bounced back to the initial water
surface line obtained without data assimilation. Several hours after image acquisition
the results obtained with and without assimilation completely overlapped. The effect
of the assimilation of remote sensing information is thus limited by the persistence of
the initial condition and due to the dominating effect of the upstream boundary condi-
tion (i.e. inflows); only a temporary improvement can by achieved through a mere re-
initialization of hydrodynamic models (Schumann et al., 2009). Andreadis et al. (2007)
came to a similar conclusion in their proof-of-concept study. To tackle the problem of
non-persistent model improvements, the authors successfully exploit the time correla-
tion of model errors. By complementing the state updating approach with an update of
the boundary condition, thereby correcting errors in forcing data as part of the data as-
similation scheme, they achieve a more sustainable model improvement. Hostache et
al. (2009) propose a parameter updating approach as an alternative to the state updat-
ing method that was used in previous studies. A variational data assimilation method
using distributed water level information was used to combine in an optimal sense mea-
surement data and a 2-D shallow water model. The remote sensing-derived water level
data allowed identifying clusters of optimal Manning friction coefficients for various ar-
eas in the floodplain that are characterized by homogeneous friction. However, in an
operational situation this does not seem to be a valid approach to correct for errors
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related to the uncertainty of the forcing.

As pointed out by Schumann et al. (2009), there is no doubt that a comprehensive
remote sensing data assimilation framework has the potential of becoming a critical
component in future flood forecasting systems. The objective of this paper is to con-
tribute to the ongoing debate on how to integrate remote sensing-derived data into
hydrodynamic modelling. In particular, we aim at investigating the accuracy and sam-
pling rate requirements for remote sensing inferred water stage products. Moreover,
we want to propose a data assimilation framework that is adapted to the form of proba-
bility density functions that are typically associated with modelled and remotely sensed
water stages. Lastly, we need to untap new ways for updating the forcings in order to
achieve a persistent improvement of hydrodynamic models with the information con-
tained in satellite observations.

2 Methods
2.1 Experimental design

Figure 1 shows the synthetic experiment design used in this study for assessing the
added-value of the proposed data assimilation technique.

The adopted experimental design is similar to the one presented by Andreadis et
al. (2007). The experiment consists in assimilating synthetic water stage observations
into an ensemble of hydrodynamic models whose upstream boundary conditions (flow
hydrographs) are produced using corrupted semi-distributed hydrologic models. De
Lannoy et al. (2007) showed that one of the main underlying assumptions of filtering
schemes, namely that both observations and model predictions are unbiased, is often
not satisfied. For this reason they recommend that data assimilation schemes should
include a bias correction algorithm. While we assume remote sensing observations
to be unbiased and to only contain a random error component, we consider model
predictions to contain both random and systematic errors. A two-step approach is
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therefore adopted to generate model predictions. Step one consists in randomly dis-
turbing model parameters, forcings and initial conditions of the hydrologic model. The
procedure for generating the unbiased ensemble of model realizations is explained in
detail in Sect. 3.4. Step two consists in introducing an artificial bias to the simulated
upstream boundary discharges and to run the hydrodynamic model with these biased
forcings (i.e. the “open loop” simulations).

Synthetic observations are generated by adding white noise to a so-called “truth”
model. The “truth” corresponds to one hydrodynamic model realization which is in-
tegrated for one upstream inflow. The latter corresponds to one unbiased hydrologic
model realization. The “truth” and the ensemble of model predictions are generated
separately. It is worth mentioning that in the context of a proof-of-concept study, the
“truth” does not attempt to precisely represent the real system, but only a hypotheti-
cal system, which approaches the real world. For a given time step, the “truth” thus
corresponds to a water surface line that is computed between the upstream and down-
stream boundaries of the river reach. The prognostic states of the model consist of
water levels that are computed for every river cross section (1-D) or grid point (2-D/3-
D) of the model domain. As a matter of fact, synthetic observations can be easily
mapped to modelled state variables. In order to produce temporally and spatially dis-
tributed synthetic observations of water stage, the “truth” is corrupted by a white noise.
Different observation perturbation magnitudes are chosen in order to investigate the
performance of the assimilation scheme as a function of observation uncertainty. Re-
ported root mean squared errors of remote sensing-derived water levels range from
20cm (Schumann et al., 2008) to 3m (Oberstadler et al., 1997) depending mostly on
satellite sensors, floodplain topography and DEM accuracy. It is worth mentioning here
that the upcoming SWOT mission (Alsdorf et al., 2007) is expected to deliver water
elevation products with an accuracy of 50cm (Andreadis et al., 2007). Similarly, the
impact of the sampling rate of satellite data will be investigated by changing the time
interval between observations.
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2.2 Data assimilation algorithm

The data assimilation technique implemented in this study is based on the Particle Filter
(PF), an ensemble filtering method that has its origin in Bayesian estimation. Unlike the
widely used EnKF (Evensen, 1994; Burgers et al., 1998), which simplifies the recursive
estimation by assuming a Gaussian distribution for state variables, the PF relaxes the
need for restrictive assumptions regarding the forms of the probability density functions;
that is, PF can easily manage the propagation of a non-Gaussian distribution through
nonlinear hydrologic and hydrodynamic models (Moradkhani, 2008).

Early implementations of the PF were based on the Sequential Importance Sampling
(SIS) method, which is a Sequential Monte Carlo procedure developed mainly to allow
for a full representation of the probability distributions of state variables via a number
of independent random samples, called particles. These particles are sampled directly
from the state-space to represent the posterior probability, and a weight is computed
for each particle according to the information contained in the observations. Next, an
estimate is computed based on these particles and weights. Weights and estimates
are sequentially updated every time an observation becomes available.

The SIS algorithm has serious limitations that need to be addressed. The particles
tend toward dispersion owing to the stochastic behaviour of the system, with the result
that many of them drift away from the “truth” and obtain negligible weight. Only a few
particles do participate effectively in the filter causing also wastage of computation re-
sources. To avoid the degeneracy of the SIS method, a selection (i.e. resampling) stage
needs to be introduced to eliminate samples with low weight and replicate samples with
high weight. The most common resampling scheme is the Sequential Importance Re-
sampling (SIR) developed by Gordon et al. (1993). The authors refer to Moradkhani et
al. (2005) and Weerts et al. (2006) for more detailed explanations of the PF and its use
in hydrologic sciences.

Each particle represents the water surface line resulting from one hydrodynamic
model at the assimilation time t,. The differences between particles stem from
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differences in upstream hydrographs that were propagated across the hydraulic model.
The number of prognostic state variables (i.e. water levels) corresponds to the number
of cross sections or grid points. Since observations are direct measurements of the
state, the mapping of observations to modelled state variables is straightforward. One
weight per particle and per model output location is computed by using a Gaussian
likelihood, as follows:

1 -, ‘2”;;/ D)

. e K (1)
o, Vo

ij Jhd
w, =,O(Zk|Xk )=

In Eq. (1), W/I{J is the weight (probability) of /-th particle and j-th observation at k-th
discrete time step (assimilation time), z is the observation vector (i.e. synthetic water
stages), x is the state vector (i.e. prior estimates of water stages), h is a nonlinear
operator that relates state and observation (in this case h(x,0) = x), @ is a vector of
time-invariant parameters and o is the standard deviation associated to the obser-
vation. Although Schumann et al. (2007) demonstrated that the observational error
standard deviation o related to SAR-derived water stages is characterized by spatial
variability, for sake of simplicity, the assumption is made here that o remains constant
along the length of the river reach. Similarly, we assume that the observational error
standard deviation o is the same at every assimilation time.

Subsequently, one single weight per particle is computed by applying the joint prob-
ability theory for independent variables (Eq. 2), which is then normalized (Eq. 3). N,
is the number of particles and N, is the number of observations that is equal to the
number of model output locations.

w,=[1w (2)

~.
1}
e
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The probability obtained at the previous steps allows for computing an expectation of
the updated water stage as follows:
N,

E(xq) =D x, W, (4)
1

©

~.
1l

The above-described procedure represents the SIS algorithm and provides the pos-
terior pdf of the particles {xj(,W,;} and the expectation E(x,). However, as explained
previously, an additional resampling step is needed in order to avoid degeneracy of the
system toward a few particles. The SIR algorithm replicates the particles in proportion
to their weights: those with an associated low importance weight are replaced with
replicas of those having higher weight. Finally, the same weight Nlp is assigned to each

“new” particle in order to create equally weighted random measures {x,, Ni}.
p

As a result, at k-th discrete time step, each model will be re-initialized using updated
water levels before being integrated until the next assimilation time.

2.3 Coupled hydrologic-hydraulic model

The modelling sequence consists of the loose coupling of a semi-distributed hydrologic
model and a 1-D hydraulic model. The sequence consists of the discharge hydrographs
computed by the hydrologic model being integrated with the hydraulic model as up-
stream boundary condition. The upstream boundary discharge is produced using the
Community Land Model (CLM) (Dai et al., 2003), a global land surface model built on
the fundaments of ecological climatology, over the 356 km? drainage area of the Alzette
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River extending upstream of the gauging station at Pfaffenthal. In this study the ver-
sion 2.0 of CLM in stand-alone mode is used, taking advantage from an optimized and
transparent model structure. The model’s structure is characterized by a grid limited
to 4 cells. The surface heterogeneity is represented in the surface data using different
fractions of land cover type and different plant functional types through patches. The
observed atmospheric forcings were assumed to be uniform and kept constant for the
different patches for all the grid cells. Ten soil physical parameters from CLM were
estimated for the observed discharge. The selected parameter set is directly related
to surface runoff and baseflow processes (for a detailed description of the parameters
and physical processes in CLM 2.0, the reader is referred to De Lannoy, 2006). For the
modelled discharge, a linear routing model was applied (Troch et al., 1994).

The hydraulic model is implemented over a 19km reach of the Alzette River be-
tween the gauging stations Pfaffenthal and Mersch. Since in this area the flow direction
is mainly parallel to the channel, the 2-D flow field that is typically related to riverbank
overtopping can be accurately approximated by a 1-D representation (i.e. velocity com-
ponents in directions other than the main flow direction are not accounted for). Thus,
the widely used Hydrologic Engineering Center River Analysis System — HEC-RAS
(HEC-RAS 4.0, 2008) — was set-up for 1-D river flow computation. A spatially uniform
Manning friction coefficient for both the channel and floodplain was chosen, 0.047 and
0.184, respectively (for further details about the calibration procedure we cross-refer
to Montanari et al., 2009). It is worth mentioning that the methodology can also be
extended to rivers characterized by a more complex geometry (which need to be mod-
elled 2-D). In this case the prognostic state variables would correspond to the water
levels simulated at every grid point.

2.4 Ensemble generation

In order to represent the hydrodynamic model uncertainty, an ensemble of upstream
boundary conditions (i.e. discharge) model was generated with CLM2.0.
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For this purpose, and following the methodology proposed by Pauwels et al. (2009),
the meteorological forcings, the model parameters and the initial conditions were dis-
turbed by adding a Gaussian random number to their deterministic values. The stan-
dard deviation of this random number was set to a fraction of the parameter value.
Obviously, it is important to realistically assess the model uncertainty in order to con-
duct the assimilation study in a meaningful way. The parameters need to be perturbed
in such a way that the spread of the discharge ensemble optimally brackets the range
of discharge observations, thereby providing a challenging test case for the assimila-
tion of remote sensing data. It is thus expected that on average the ensemble mean
differs from the observation by a value that is equal to the time average of the ensem-
ble spread (De Lannoy et al., 2006). As a prerequisite for calculating the verification
measures, first the ensemble spread (ensp,), the ensemble mean square error (mse,),
and the ensembile skill (ensk,) need to be computed at each time step k:

N,
1 <,
enspy = — > (4, - q})? (5)
P =1
Np
mse, = > (g, -qp)° (6)
i=1
ensk, = (g} — %) (7)

N is the number of particles and the superscripts " and ° refer to the forecasted and
observed variable, respectively. The following verification measures (Egs. 8 and 9)
control that (i) the ratio between the ensemble skill (ensk,) and the ensemble spread
(enspy) is close to one and that (ii) the truth is statistically indistinguishable from a
member of the ensemble (De Lannoy et al., 2006).

(ensk) -1
(ensp) -

(8)
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(V/mse) 2N
In Egs. (8) and (9), <> indicates an average over the simulation period.
The optimal fractions of parameter values (i.e. standard deviation of random number
added to the deterministic values) were determined using an interval search. An en-

semble size of 64 members was used, and the ensemble size with the best match for
both statistics was used in the data assimilation study.

The ensemble verification statistics obtained for the CLM with 64 particles are 22K —

(ensp) ~

12ww§§22z4 Ml=0.71~0.74.

As mentioned above, these verification measures can be interpreted as indications
that the ensemble covers the range of observations. It is important to note here that
they are calculated over a 6 month period from 1 January 2007 to 30 June 2007.
Figure 2 shows the resulting ensemble for the studied flood event (1 January 15:00-7
January 23:00, 2003). Finally, an artificial positive bias of 25% has been introduced
to the simulated upstream boundary discharge in order to simulate the bias that is
inherent in most model realizations, even after calibration.

The ensemble of hydraulic model realizations, hereafter called “open loop” simu-
lations, has been produced by integrating the hydrodynamic model core with all the
members of the ensemble of discharges generated by the hydrologic model for the
analysis period 1 January 15:00-7 January 23:00, 2003. The ensemble of water sur-
face lines represents the coupled H-H model uncertainty, as shown in Fig. 3 for a given
time step.
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3 Results

The hydrodynamic model has been used to simulate water levels using the ensemble
of hydrographs generated by the CLM (Fig. 2), from which water levels at each cross
section can be extracted at the time of a virtual satellite overpass. A first test was
performed at the time step f,, (i.e. 24 h after the onset of the flood wave) during the
rising limb of the flood. Before assimilating the synthetic observations obtained from
the “truth” model run, the average standard deviation of simulated variables along the
river reach is 0.43m at £,,. By using the SIR algorithm, particles with low weight are
replaced by those having higher weight during the analysis step. The weights given to
the individual particles are computed based on the information contained in the satellite
data (Eq. 1).

First we investigated the effect of observation uncertainty on the mean forecast er-
ror and ensemble spread after assimilation. The experiment was repeated for eight
sets of observations generated assuming different water stage errors (assumed to be
unbiased). Figure 4 shows the histograms of the water stages of the resampled par-
ticles corresponding to an intermediate cross section (located about 6.5 km upstream
the downstream boundary) at the assimilation time #,,. The results were obtained with
10cm, 30cm, 50cm, 70cm, 1 m, 5m and 10 m observation error standard deviation,
respectively. The standard deviation of 30 cm corresponds to a published value of root
mean squared error (RMSE) obtained in the same study area with an ENVISAT ASAR
flood image fused with a high resolution high accuracy Lidar DEM (Hostache et al.,
2009) and may thus be considered as a realistic accuracy assumption for this exper-
iment. Lower standard deviations might eventually be achieved with high resolution
SARs, high resolution DEMs and favourable floodplain geometries. The expected el-
evation accuracy of the upcoming SWOT mission corresponds to 50 cm (Andreadis et
al., 2007). Higher standard deviation should help our understanding of the usefulness
of highly uncertain observations.
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As can be seen from the various panels of Fig. 4, the ensemble spread represent-
ing forecast uncertainty, decreases and the a posteriori expectation (i.e. mean of the
resampled particles) gets closer to the “truth” for smaller standard deviations. For com-
parison the histogram corresponding to the particles before the resampling (a priori
estimate) is plotted.

With a 10 cm standard deviation of observations, the PF allows discarding the ma-
jority of the particles and creates many replicas of the particle that is closest to the
“truth”. We observe that with increasing standard deviation the retained number of par-
ticles becomes larger and the ensemble spread gradually extends. However, up until
5 m of standard deviation the expectation is close to the “truth” which means that the
PF removed the artificial positive bias that was added to the model simulations. The
distribution of water levels associated with the individual particles is centred around
the “truth”. However, more and more particles are retained after the resampling step
since the discriminatory power of the observations progressively reduces. With 10m
standard deviation, the PF does not allow any improvement with respect to the a pri-
ori estimate and particles with low weight are taken into account. Similar results were
obtained for all the cross sections distributed over the length of the reach (not de-
picted here). The value of the observations clearly depends on the observation and
pre-assimilation forecast error.

Following the resampling step, the model is propagated in time and its result be-
comes the forecast in the next analysis cycle. To do so, the hydrodynamic model is
re-initialized with updated water levels and integrated until the next analysis cycle (i.e.
when new observations become available). Figures 5 and 6 show the stage hydro-
graphs corresponding to the first cross section (upstream boundary) and an intermedi-
ate cross section along the river reach. Here we assume an imaging frequency of 12h
and a standard deviation of unbiased observation errors of 30 cm.

In both figures, the black lines represent the ensemble of particles corresponding
to the model results obtained using the filter. The green line is the “truth”, the cyan
line is the expectation computed considering the open loop and the magenta line is
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the expectation computed using the filter. As already observed in the histograms in
Fig. 4, during the analysis step the expectation computed with the filter is very close to
the “truth”, meaning that the PF leads to a significant increase of the accuracy and re-
duction of the uncertainty of the model. Nevertheless, within a few time steps after the
analysis, the forecast returns towards the open loop model realisation. The RMSE (cal-
culated between the expectation and the truth) over the entire time window is practically
the same with and without assimilation (Tables 1 and 2). Hence the improvement that
was obtained during the analysis step is lost very quickly. The improvement becomes
slightly more persistent moving downstream along the river, which is an indication of
the dominating effect of the boundary condition in the river reach under investigation.
During the experiment, the assimilation time step was changed step by step from 48 h
down to 12 h, as shown in Tables 1 and 2, in order to investigate the performance of the
data assimilation scheme as a function of the frequency of the observations. Higher
observation frequencies were not considered because they are not plausible with re-
spect to acquisitions of SAR images. Increasing the observation frequency did not lead
to any significant improvement with respect to the forecast as demonstrated in Tables 1
and 2.

In Tables 1 and 2 the RMSE is computed by comparing the ensemble mean water
stage and the truth over the entire event time window at the two representative river
cross sections analysed in Figs. 5 and 6. Albeit the proposed particle filter-based as-
similation scheme is able to significantly reduce model uncertainty during the analysis
step, the improvement completely disappears within a few hours following the assimila-
tion. This result confirms the one obtained by Matgen et al. (2007b) who encountered
the same problem in their study on the same river reach. Andreadis et al. (2007)
stated that in channels where boundary conditions almost fully govern the flow regime,
the time window of model skill improvement due to assimilation of observations is ex-
pected to be short. In order to overcome this problem, an enhanced data assimilation
scheme is proposed that allows updating the forcing of the hydrodynamic model using
information on model error that is obtained during the analysis step. The estimate of
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water stage, E(x,), as computed in Eq. (4), is used to retrieve the corresponding es-
timate of discharge, E(Q,) for the upstream boundary using the internal rating curve
computed by the hydrodynamic model Hec-Ras. Then a relative error term is computed
at the assimilation time:

_Q-E@)

Q%

AQ, (10)

O}( is the ensemble discharge average generated by the hydrologic model during the
analysis step (Fig. 3) that is the upstream boundary of the hydrodynamic model (cross
section number 1, as indicated by the superscript).

Then, from time k=t,;s + 1 until the next assimilation time, every member of the
ensemble of discharge hydrographs represented in Fig. 3 is corrected by applying the
relative error term AQ,as follows:

Q'=Q'-20, Q! ic [(tgss +1 );t;’ss] (11)

The method is based on the assumption that relative model errors remain constant and
that correcting the inflows by the same relative error term at subsequent time steps will
improve the accuracy of the model predictions from time steps t,.s+1 through the next
assimilation steps. Another approach would be to use an autoregressive model that
uses the current value of model error to predict the model errors at subsequent time
steps (e.g. Neal et al., 2007). The parameters of such a forecast model would need to
be estimated with observed discharge records. However, such data are very often not
available. The proposed method, albeit very simple, may be used as the best estimate
of the propagation of model errors in the absence of discharge data. The underlying
assumption is that current model errors are due to an over- or underestimation of water
stored in the basin and that if the basin acts like a linear reservoir the error in discharge
decreases following an exponential decline (in the absence of rainfall).
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Similar to the first data assimilation scheme, the impact of various imaging frequen-
cies on the analysis and forecast precision has been investigated. Hereafter the ex-
periment performed with an interval of 48 h between observations is analyzed. Note
that the synthetic observations were obtained by adding white noise with a standard
deviation of 0.3 m to the “truth” model.

Figure 7 shows the effect of water stage assimilation when both states (i.e. water lev-
els) and inputs (i.e. inflows) are updated. The proposed approach resolves the issue of
non persistent model improvement. However, there is a risk to overcorrect the model
with the error forecast model applied in this study. When the assimilation is performed
during the rising limb of the hydrograph, the time window of the model improvement is
short, whereas when the assimilation is performed during the recession the reduction
of the uncertainty is persistent (after the assimilation at 72 h, the assimilation at 120 h
appears to be unnecessary). The explanation of this result can be found in the analy-
sis of the time series of absolute error (truth — expectation). This error is very unstable
during the rising limb when new input errors (i.e. error in precipitation) are added at
every time step. This input error (i.e. random error) is impossible to predict. During the
falling limb, however, the relative model error remains almost constant and can easily
be predicted (i.e. systematic error). This explains why the systematic error forecast
model that is used for the boundary inflow correction is very efficient during the reces-
sion period. The filter is prone to more random error in the rising limb, which eventually
results in more uncertain analyses. In this synthetic setup, we know that the chosen
bias model is good and that the jumps in the results are entirely due to unexplained
random noise, rather than to bias. Figure 8 shows flow hydrographs resulting from an
experiment where the time interval between observations is 24 h. With respect to the
previous results, it should be noted that increasing the frequency of the assimilations
improves the performance of the assimilation system during the rising limb and around
the peak, whereas no significant positive effect is obtained during the recession, where
a single update appears to be enough.
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Similar to Tables 1 and 2, Table 3 shows the RMSE of the ensemble mean water
stage as opposed to the “truth”. The RMSE only slightly changes between assimila-
tion frequencies of 12 and 24 h, whereas the RMSE changes rather significantly when
increasing the sampling rate from 24 to 48 h. This is due to the fact that with an as-
similation frequency of 48 h, there is no observation available at the onset of the falling
limb. Therefore it has to be noted that this result is very specific for the flow hydrograph
under investigation. In general, the result demonstrates that the required imaging fre-
quency depends on the temporal correlation of model error. As a matter of fact, during
the rising limb the imaging frequency needs to be higher than during the recession. It
can also be noticed that the RMSE with assimilation is significantly lower than without.

4 Discussion and conclusions

Our study demonstrates that the information contained in radar flood images can lead
to improved flood inundation modelling. The experiments conducted with synthetically
generated observations integrated with a 1-D hydrodynamic model show that:

1. The Particle Filter enables to correct water depth from a corrupted hydrodynamic
model by assimilating synthetic observations that are realistic in terms of accuracy
for remote sensing-derived water levels. We advocate the use of a particle filter as
part of the proposed assimilation scheme because it provides flexibility regarding
the form of the probability densities of both model simulations and remote sensing
observations.

2. The effectiveness of the filter is not only dependent on the accuracy of the obser-
vations but also on the model itself. The latter is represented by the spread of
an ensemble of water level simulations. With currently available remote sensing-
derived water level products the proposed assimilation scheme appears to be very
useful in ungauged catchments, where the use of coupled hydrologic-hydraulic
models is required. This conclusion is well in line with the findings of Neal et
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al. (2009) in their recent study. In instrumented catchments, the hydrodynamic
model uncertainty is generally low compared to remote sensing observation un-
certainty.

. Our results further show that it is crucial to make use of the time correlation of

model errors in order to significantly and persistently improve the hydrodynamic
model. During the analysis step, the expectation of water levels resulting from the
digestion of remote sensing observations into a hydrodynamic model provides
the current value of the model error. The error forecast model regresses the
future error value against the current value. The proposed error forecast model is
particularly well suited for predictions in ungauged catchments as no calibration
step is required. The experiments show that during the rising limb when rainfall
errors are contunuously add to model error in an unpredictable way, the imaging
frequency needs to be higher than during recession.

. Our research has clearly demonstrated that merely updating the state variable

of the model (water level and hence water storage), only improves the model
forecast over a very short time horizon. A much more effective way of updating
consists in adjusting the fluxes at the upstream boundaries of the model, which
in general have the highest uncertainty as a result of the poorly known rainfall
distribution over a catchment, or uncertainty in hydrologic model predictions. By
selecting the most likely model runs, the PF, unlike the EnKF that was used in
similar studies (e.g. Andreadis et al., 2007), closes the overall water balance. It
thus allows inferring input data (e.g. whole-catchment precipitation) and model
parameters that gave the most likely simulations given the observations. The ap-
proach may indeed be viewed as a way to diagnose the functioning of hydrologic
systems.
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of water level observations. Moreover, we feel that more sophisticated methods for
boundary inflow correction are needed to further enhance the performance and persis-
tence of the assimilation. As pointed out by Neal et al. (2009) this kind of investigation
is timely because in the very near future new constellations of satellite radar missions
will lead to a significant increase in the volume of data available for space-borne water
level estimation. The expected faster supply and processing of multi-mission satellite
data are compatible with real-time crisis management requirements. This study shall
thus contribute to the shift from purely reactive space-borne flood monitoring services
towards systematic, proactive and global floodplain monitoring services.
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Table 1. RMSE [m] of the ensemble mean water stage with respect to the “truth”, computed
at the upstream boundary over the entire time window excluding the analysis steps for 0.3 m
of standard deviation of the observation (o) and various assimilation frequencies (F). At this
cross section the RMSE obtained with the mean of the “open loop” simulation equals 0.39 m.

F— 48h 24h 12h
ol
0.3m 0.39 0.39 0.39
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Table 2. RMSE [m] of the ensemble mean water stage with respect to the “truth”, computed at
an intermediate cross section over the entire time window excluding the analysis steps for 0.3 m
of standard deviation of the observation (o) and various assimilation frequencies (F). At this
cross section the RMSE obtained with the mean of the “open loop” simulation equals 0.34 m.

F— 48h 24h 12h
ol
0.3m 0.33 0.31 0.28
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Table 3. RMSE [m] of the ensemble mean water stage opposed to the “truth”, computed at
an intermediate cross section over the entire time window excluding the analysis step for 0.3 m
of standard deviation of the observation (o) and increasing assimilation frequency (F). At this
cross section the RMSE obtained with the mean of the “open loop” simulation equals 0.34 m.

F— 48h 24h 12h
ol
0.3m 025 0.19 0.18
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Fig. 1. Scheme of the data assimilation experiment. H-H model stands for coupled hydrologic-
hydraulic model.
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Fig. 2. Ensemble of discharges generated by the CLM.
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Fig. 3. Ensemble of water surface lines generated by the hydrodynamic model at time 24 h.
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Fig. 4. Histograms of water stages at an intermediate cross section computed with different
values of standard deviation of the observations.
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Fig. 5. Stage hydrographs at the upstream boundary with a 12-h assimilation interval.
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Fig. 6. Stage hydrographs at an intermediate cross section with a 12-h assimilation interval.
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Fig. 7. Stage hydrographs at an intermediate cross section with a 48-h assimilation interval
with input bias correction.
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